IFP Energies nouvelles (IFPEN) est un acteur majeur de la recherche et de la formation dans les domaines de l’énergie, du transport et de l’environnement. De la recherche à l’industrie, l’innovation technologique est au cœur de son action, articulée autour de quatre priorités stratégiques : CLIMAT, ENVIRONNEMENT ET ÉCONOMIE CIRCULAIRE, ÉNERGIES RENOUVELABLES, MOBILITÉ DURABLE et HYDROCARBURES RESPONSABLES.
L’engagement d’IFPEN en faveur d’un mix énergétique durable se traduit par des actions visant :
tout en répondant à la demande mondiale en mobilité, en énergie et en produits pour la chimie.
Dans cet objectif, IFPEN développe des solutions permettant, d’une part, d’utiliser des sources d’énergie alternatives et, d’autre part, d’améliorer les technologies existantes liées à l’exploitation des énergies fossiles.
In current power electronics (PE) applications, controlling the junction temperature (Tj) of semiconductor devices is crucial to ensure their reliability and durability. This temperature directly impacts the performance, stability, and lifetime of electronic devices, thereby influencing their energy efficiency. Beyond purely technical aspects, such control also contributes to a sustainable development approach: by improving the understanding and management of thermal constraints, it becomes possible to optimize component usage, reduce oversizing, and extend the lifetime of electrical systems. This leads to better resource utilization (e.g., semiconductor materials), reduced maintenance and replacement needs, and ultimately, a more responsible and sustainable use of new technologies.
To achieve this, the internship aims to explore an innovative method for estimating the junction temperature of Wide Band Gap (SiC and GaN) semiconductors by using thermo-sensitive electrical parameters (TSEPs). These indirect thermal measurements offer a significant advantage by avoiding physical access to the junction, which is often complex with traditional methods.
This internship continues previous work at IFPEN that investigated and proposed a measurement method for the VGSTH parameter (threshold gate voltage), for which a dedicated measurement board was designed and validated through numerical simulations. In the first phase, the objective will be to design an experimental setup building on these earlier results. Subsequently, the experimental measurements obtained via TSEPs will be used to train a predictive model that will ultimately allow the estimation of the virtual junction temperature of semiconductors (Tvj).
This internship may lead to a PhD project in a broader perspective, where thermal measurements will be leveraged to design virtual thermal sensors. These innovative tools will enable real-time monitoring and optimization of power converter operation for electric traction, thereby improving energy efficiency, extending system lifetime, and directly contributing to sustainable mobility objectives.
Engineering school or Master’s degree student with strong knowledge in electrical engineering, power electronics, and thermal modeling.
Desired technical skills :
Personal quality :
Keywords: Power electronics, TSEP, SiC, GaN, junction temperature, thermal, modeling.