Sustainable Aviation Fuels: Development of Fuel Database and Property Prediction using Machine Learning (Ref N°13)

IFP Energies nouvelles - Mobilité et Systèmes

-

Stage

[Réf. : R10/2026/13]

IFP Energies nouvelles (IFPEN) est un acteur majeur de la recherche et de la formation dans les domaines de l’énergie, du transport et de l’environnement. De la recherche à l’industrie, l’innovation technologique est au cœur de son action, articulée autour de quatre priorités stratégiques : CLIMAT, ENVIRONNEMENT ET ÉCONOMIE CIRCULAIRE, ÉNERGIES RENOUVELABLES, MOBILITÉ DURABLE et HYDROCARBURES RESPONSABLES.

L’engagement d’IFPEN en faveur d’un mix énergétique durable se traduit par des actions visant :

tout en répondant à la demande mondiale en mobilité, en énergie et en produits pour la chimie.

Dans cet objectif, IFPEN développe des solutions permettant, d’une part, d’utiliser des sources d’énergie alternatives et, d’autre part, d’améliorer les technologies existantes liées à l’exploitation des énergies fossiles.

Sustainable Aviation Fuels: Development of Fuel Database and Property Prediction using Machine Learning

Among the various ways to decarbonize the aviation sector, sustainable aviation fuels (SAF) remain the most promising solution for the short term, as they aim to be “drop-in” fuels which require no or limited hardware modifications and can be blended in conventional jet fuels.

Currently, SAF from different production pathways are allowed by a maximum incorporation rate of 10% to 50% into conventional kerosene. And 100% SAF is expected in the near future, as discussed by various certification organizations. However, this results in challenges in terms of physical and chemical properties that remain unclear and difficult to anticipate for SAF and their blends, as they introduce significant differences and increased variety in composition with respect to conventional jet fuels whose composition remains unchanged for more than 80 years.

The challenges mainly originate from: (i) lack of data for the properties of these future fuels, (ii) out of validity range for some existing models designed for conventional fuels, and (iii) complexity in blending and formulation which requires better understandings on their mixing behaviors. Therefore, it is necessary and essential to build a comprehensive database and improve predictions on the physical and chemical properties of sustainable aviation fuels and their blends.

In this context, IFPEN is in a central position as we have expertise on both the production processes and the utilization with knowledge on fuel formulation.

We propose this internship to further enhance our activities on sustainable aviation fuels, with the following tasks :

Required Profile:

Bac+4 or Bac+5 in Computer Science.

Keywords: Sustainable Aviation Fuels, Property Prediction, Relational Database, Machine Learning

Duration and Date: 6 months between February and September 2026
Location: Rueil-Malmaison or Solaize (The student can choose according to his/her convenience)
Telephone: 01 47 52 71 15

handi accueillante