Numerical Modeling of Upgraded Bio-Oil and Its Thermal Stability

IFP Energies nouvelles - Lyon

-

Stage

[Réf. : IFPEN-R12-12]

IFP Energies nouvelles (IFPEN) est un acteur majeur de la recherche et de la formation dans les domaines de l’énergie, du transport et de l’environnement. De la recherche à l’industrie, l’innovation technologique est au cœur de son action, articulée autour de quatre priorités stratégiques : Mobilité Durable, Energies Nouvelles, Climat / Environnement / Economie circulaire et Hydrocarbures Responsables.

Dans le cadre de la mission d’intérêt général confiée par les pouvoirs publics, IFPEN concentre ses efforts sur :

Partie intégrante d’IFPEN, l’école d’ingénieurs IFP School prépare les générations futures à relever ces défis.

Numerical Modeling of Upgraded Bio-Oil and Its Thermal Stability

Biomass-derived pyrolysis oil (bio-oil) is a promising renewable feedstock with potential to reduce fossil fuel dependence. Despite its high biogenic carbon content, its direct use is limited due to poor stability and incompatibility with current refinery technologies, necessitating effective upgrading methods.

Bio-oil’s instability stems from its complex, oxygen-rich composition (various oxygenated functionalities), prone to polymerization, phase separation, and coke formation during storage or heating. This internship offers an opportunity to contribute to solving these challenges through different numerical modeling techniques that improve our understanding and prediction of bio-oil properties and stability.

Description

This internship focuses on numerical modeling of bio-oils using multiple approaches.

First, molecular reconstruction (MR) provides detailed chemical composition from commonly available analytical data. The existing MR framework will be validated with new experimental results and refined to improve prediction accuracy.

Second, a model predicting the rheology (e.g., viscosity) of upgraded bio-oils across refining temperatures will be developed to enhance understanding of thermal stability.

Finally, kinetic modeling of hydrodeoxygenation will start with a simple global kinetics, with potential validation of an existing hydrotreatment model using new data depending on time availability.

The work will be divided into the following tasks:

This internship may be followed by a PhD project.

Required profile

Chemical Engineering students with programming experience, or Informatics students interested in developing chemical engineering knowledge

Additional information

Duration of the internship : 6 months
Workplace : IFPEN Lyon, Rond-point de l'échangeur de Solaize, 69360 Solaize
Transport : public transportation / personal vehicle
Paid internship 1130€/month (gross)

handi accueillante