IFP Energies nouvelles (IFPEN) est un acteur majeur de la recherche et de la formation dans les domaines de l’énergie, du transport et de l’environnement. De la recherche à l’industrie, l’innovation technologique est au cœur de son action, articulée autour de quatre priorités stratégiques : Mobilité Durable, Energies Nouvelles, Climat / Environnement / Economie circulaire et Hydrocarbures Responsables.
Dans le cadre de la mission d’intérêt général confiée par les pouvoirs publics, IFPEN concentre ses efforts sur :
Partie intégrante d’IFPEN, l’école d’ingénieurs IFP School prépare les générations futures à relever ces défis.
The bubble diameter is a critical parameter influencing both hydrodynamics and mass transfer in large-scale bubble column reactors. Doppler probes have been designed to detect the presence of gas and the velocity of the gas–liquid interface. However, these probes only measure the component of the translational velocity along the fiber axis. As a result, they do not provide the actual mean bubble diameter but instead yield an average chord length.
Depending on the flow conditions, as well as the bubble shape and inclination, deconvolving the chord length distribution to compute the bubble diameter distribution, is highly challenging–if not impossible. Numerical methods offer a promising means to address this challenge by extracting features directly from the dataset.
This internship will focus on developing a methodology to establish a link between the information provided by the Doppler probe and the bubble diameter. For this purpose, experimental data obtained from a 40 cm bubble column, combined with numerical results produced with an in-house code, will be used to generate datasets.
The work will be divided in several stages:
Master 2 in mathematics / computing sciences.
Additional information
Duration of the internship: 6 months
Workplace: IFPEN Lyon, Rond-point de l'échangeur de Solaize, 69360 Solaize
Transport: public transportation / personal vehicle
Paid internship: around 1130€/month (gross)